Exponential Smoothing: A Prediction Error Decomposition Principle
نویسندگان
چکیده
In the exponential smoothing approach to forecasting, restrictions are often imposed on the smoothing parameters which ensure that certain components are exponentially weighted averages. In this paper, a new general restriction is derived on the basis that the one-step ahead prediction error can be decomposed into permanent and transient components. It is found that this general restriction reduces to the common restrictions used for simple, trend and seasonal exponential smoothing. As such, the prediction error argument provides the rationale for these restrictions. Keywords: time series analysis, prediction, exponential smoothing, ARIMA models, state space models JEL Classi cation: C22, C53
منابع مشابه
Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...
متن کاملTime series decomposition model for accurate wind speed forecast
Climate change can be considered to be the greatest environmental challenge our world is facing today. Along with the need to ensure long-term assurance of energy supply, it imposes an obligation on all of us to consider ways of reducing our carbon footprint and sourcing more of our energy from renewable sources. Wind energy is one such source and forecasting methods for the prediction of wind ...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whe...
متن کاملForecasting time series with complex seasonal patterns using exponential smoothing
A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier series with time varying coefficients and ARMA error correction, is introduced for forecasting complex seasonal time series that cannot be handled using existing forecasting models. Such complex time series include time series with multiple seasonal periods, high frequency seasonality, non-integer s...
متن کاملPrediction intervals for exponential smoothing using two new classes of state space models
Three general classes of state space models are presented, based upon the single source of error formulation. The first class is the standard linear state space model with homoscedastic errors, the second retains the linear structure but incorporates a dynamic form of heteroscedasticity, and the third allows for non-linear structure in the observation equation as well as heteroscedasticity. The...
متن کامل